
Towards unified modelling of product life-cycles

G. Thimm *, S.G. Lee, Y.-S. Ma

School of Mechanical & Aerospace Engineering, Nanyang Technological University,

50 Nanyang Avenue, Singapore 639798, Singapore

Received 11 November 2004; accepted 12 September 2005

Available online 28 November 2005

Abstract

This paper presents the potential of modelling a product’s life-cycle using the Unified Modelling Language (UML). The potential benefits and

limitations are discussed. An example of a vacuum cleaner is cited in support of this approach. Model consistency across the various life cycle

stages of the product is of major concern and an algorithm for constraint management is proposed and prospective research directions highlighted.

2005 Elsevier B.V. All rights reserved.

Keywords: Unified Modelling Language; Product life-cycle; Business process; Product model

www.elsevier.com/locate/compind

Computers in Industry 57 (2006) 331–341
1. Introduction

Product Life-Cycle Management (PLM) is a strategic

business approach that consistently manages all life-cycle

stages of a product, commencing with market requirements

through to disposal and recycling (see Fig. 1). PLM involves a

multitude of stake holders (e.g., customers, suppliers, and

regulators), who require various levels of detail and representa-

tions of information. For example, the cost accountant may

wish to track the costs incurred at certain life cycle stages;

regulatory bodies are concerned with data on quality levels and

end-of-life disposal options. The type and quantum of data

modelled and how much of that data should be visible depends

on the desired granularity.

At the February 2004 Georgia Tech-Industry Symposium in

Atlanta, USA, a majority of the participants expressed their

desire for an ontology for PLM under-pinned by a formal

modelling process [private communication]. Twenty-eight

percent of the 75 participants (of which 35 were from industry)

identified ‘‘single semantic PLM language; ontologies; data
dictionaries’’ as priority research thrusts. UML, a graphical

modelling language used for computer soft- and hard-ware

development [1,2] , offers just this, although it was conceived

for object-oriented programming, and therefore, has limitations

if applied to other disciplines. Not surprisingly, ‘‘explicit PLM
* Corresponding author. Tel.: +65 67904415; fax: +65 67911859.

E-mail address: mgeorg@ntu.edu.sg (G. Thimm).

URL: http://www.drc.ntu.edu.sg/users/mgeorg

0166-3615/$ – see front matter # 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.compind.2005.09.003
use—cases followed by a formal process modelling UML for
PLM’’ was voted in third place by 23% of the Georgia Tech-

Symposium participants. It can be concluded that industry is in

need of a formal modelling technique for PLM embedded in a

computer-supported framework, towards which the authors

consider this publication a first step.

Nevertheless, to the best knowledge of the authors, no

modelling framework using a high-level, top-down modelling

technique exists that captures all the aspects of a product’s life-

cycle stages and translates or connects them seamlessly. The

modelling process is not a major concern and conventional

approaches as described in [3,4] are suitable. Past experience

shows that a translation of models (described in terms proper to

each stage) is flawed by information losses and one-way data

transfer. Consequently, a PLM modelling framework has to use

a unique language for all stages, raising the question of the ideal

candidate language. The authors are of the opinion that UML is

the most promising candidate, for reasons detailed in Section

1.1. It is not intended here to provide a fine-grained, bottom-up

modelling technique, as for example, in feature-based

modelling [5,6] , but rather a complementary approach. On

the other hand, the authors intend to implement a tool for the

creation of such models and to allow them to interact with, for

example, CAE tools.

1.1. Why UML is a good PLM modelling language

A PLM-oriented derivative of UML (PLMUL) has many

advantages over other approaches and existing modelling

G. Thimm et al. / Computers in Industry 57 (2006) 331–341332

Fig. 1. Stages in product life-cycle management.
techniques (for example, IDEF0 [7] , work-flow modelling [8]).

Some of these are:
� I
ndustry has widely accepted UML as a modelling language:

(1) UML can model business processes to some extent [9,10]

and underpins various commercial business process

planning tools. It is compelling that some business

processes are regarded as a part of a product life-cycle and

vice versa (see Sections 2.4 and 2.5).

(2) UML is presently the most versatile modelling technique

in industry.

(3) The Object Management Group [11](an international,

not-for-profit consortium including several international

companies) endorses UML and uses it in or with other

highly industry relevant specifications. Examples of such

specifications are the Model Driven Architecture (MDA)

or the Common Warehouse Meta-model (CWM).
� T
he same syntax, that is, the same graphical symbols, can be

used across product life-cycle stages. Although a developer

only visualises or modifies a very limited number of views at

a time, changes are reflected throughout the entire model,

which fosters the consistency of PLM models across life-

cycle stages. This also assures scalability: rather coarse

models can be subsequently refined until a level of detail is

reached that allows for example, prototyping or production.
� M
odern machines often rely on control by complex software

systems modelled using UML. Therefore, if the UML

approach is extended to non-software systems, the same

supporting tools can be build upon.
� P
roduct models show, depending on the stage of modelling

and the role of the persons involved, various levels of detail.

UML attends to this and allows purpose-oriented views,

favouring communication between designer, project man-

ager, process planner, client, etc.
� U
ML is consistent with state-of-the-art concepts like

functional design [12,13] and end-of-life disposal [14–16].
� U
ML is an information-rich representation; models can be

tested for consistency, analysed, or translated into other

representations (Gantt charts, bills-of-material, and so on; see

Section 2.5).
1.2. Data modelling for PLM

Although the points stated in Section 1.1 show that UML is a

good candidate for a PLM modelling language, its applicability

to detailed product design of, for example, mechanical parts is

unproven. Although UML is unable to directly describe

geometry at this moment, the authors are confident that it is still

applicable as it has the same foundation as certain feature-based

modelling approaches (all use object-oriented techniques
including inheritance, composition, association, and so on).

Examples for such feature-based approaches are standard

component libraries [17] , assembly feature templates [18,19] ,

multiple-view feature modelling [20,21] , and unified features

[5,22].

These approaches differ mainly from the approach

suggested in this paper in that they are very much focused

on product details and on developing more universal modelling

techniques (that is, a bottom-up approach, [20] has some top-

down aspects). For example, in [22] , the STEP standard is

extended to include unified featuresin order to rationalise

process planning and design for instance, as well as to foster

consistent modelling. A similar approach covering four

different life-cycles from the conceptual design stage to

product assembly is discussed in [20,21].

Opposed to this, the proposed Product Life-Cycle Unified
Modelling Language(PLUML) is an attempt to model top-

down, starting with general, macro models and then working

down towards more detailed models. Certainly, either approach

has its advantages and draw-backs and it is the hope of the

authors that, as in software development, both approaches

complement each other.

1.3. Possible issues in the UML modelling of PLM

As the examples in Section 2 show, the symbols and notions

of UML are rather easily interpreted in a more general

engineering setting. However, a closer examination reveals

some potential problems. The most prominent one is probably

the consistency of models: the propagation of changes in UML

software-models as well as consistency checks among models.

The need for consistency checks within and across engineering

models is well recognised and researched on (see for example,

[20,22–24]), but no product life-cycle encompassing approach

exists. These approaches to maintain consistency are very much

limited to part geometry and (low-level) feature compatibility.

Furthermore, even if the semantics of UML is expected to be

powerful enough to fulfill PLM-needs, the UML symbols are

visually not explicit and the existing associations not quite

appropriate. In practice, an engineer probably would like to

easily distinguish between electrical, mechanical, and entities

of other categories. The consistency of PLUML models is

further addressed in Section 3 , based on the case example of a

vacuum cleaner. Other issues are the foci of future research as

given in Section 4.

2. A PLUML case study: a vacuum cleaner

The purpose of the case example is to demonstrate the

feasibility of using UML for PLM including business

G. Thimm et al. / Computers in Industry 57 (2006) 331–341 333
processes. The management of some life-cycle stages of the

humble vacuum cleaner is used as an example and covers all

product life-cycle stages in Fig. 1. PLUML models consist

mainly of UML symbols: the designs for the vacuum cleaner

and its major sub-assemblies (motor, casing, fan and air duct,

and power regulator) are represented as objects. Most symbols

are conform to the UML language definition [2]; others are

defined by the authors and are consistent with it.

The case example is actually a common model although

incomplete, for the sake of the size of this publication. Certain

symbols occur in two or more diagrams of the partial models

shown in Figs. 3–11(views in UML terminology). For

example, the objects representing the major parts of a vacuum

cleaner in Fig. 2 can be found again in the views of Figs. 3, 4, 9,

10, and 11. Or, a consumer, represented by the actor symbol

labelled Consumer, participates in the use case diagram in

Fig. 2, as well as in the end-of-life stage diagram in Fig. 9.

These overlaps include also the view on business processes in

Section 2.5. This shows that a product life-cycle and business

processes may be represented by means of a common

modelling language.

On the other hand, these views can accommodate the

needs of a certain life-cycle stage or stake holder. Note that

the concept of views here is different from that in [20,21] ,

which focus on geometry and mechanical features of a

product.
Fig. 2. Use and m
2.1. View: conceptualisation; function, maintenance, and
design constraints

Fig. 2 shows schematically how the design of the vacuum

cleaner supports operational and maintenance functions. The

large rectangle in the upper part of Fig. 2 groups the use cases of

the vacuum cleaner. The links between the use cases and the actor

symbols at the top of Fig. 2 indicate who is concerned with which

use case. Clean and Repair are general use cases; each has

two specialisations, as indicated by the arrows with triangular

heads. The lower, large box represents the design of a vacuum

cleaner while its components are represented in the boxes just

above the large box as objects in the class Design. The dashed

arrows from the use cases to the design objects indicate that the

design objects are constrained by the use cases. The arrows with

the diamond shaped heads from the design objects of the sub-

assemblies to the design object of the vacuum cleaner indicate

that the latter is composed of them (and possibly other).

2.2. View: detailed design; assembly and model
consistency

The assembly view of a vacuum cleaner including its main

modules (represented as UML objects) is outlined in Fig. 3. The

emphasis of this view is on the interdependencies of the

modules as well as the associations with external on objects.
aintenance.

G. Thimm et al. / Computers in Industry 57 (2006) 331–341334

Fig. 3. Assembly of a vacuum cleaner.
For example, the specification of the power regulator depends

on the voltage of the power supply in the targeted market.

Modules in the diagram possess functional interfaces (circles

linked by a solid line to the module), through which other

objects are connected. In Fig. 3 , the motor has two interfaces:

the regulated power input and the anchor points used to attach it

to the casing. Furthermore, it uses an interface of the fan and air

duct unit. In other words, modules are interchangeable if they

have and depend on the same or compatible interfaces.

Similarly for the vacuum cleaner, each module can be further

decomposed into sub-modules or components.

In the case that this interchangeability does not exist, this view

allows the dependencies to be tracked and thus ensures design
Fig. 4. Productio
consistency. For example, if a replacement motor has a different

shaft, this change can be propagated to the fan on which a

corresponding modification can be triggered automatically.

2.3. View: production, warehousing, and process planning

Fig. 4 exemplifies constraints related to production and

warehousing. For example:

� The targeted production requires an automatic assembly line,
n c
and injection molding machines with an appropriate molding

cycle time to meet the production target. In the example, it is

assumed that only the top and bottom casings are produced
onstraints.

G. Thimm et al. / Computers in Industry 57 (2006) 331–341 335

Fig. 5. Classes of processes.
in-house. Allocating 250 8-h working days for production

results in a minimum output of 150 units per hour. This

implies a minimum throughput of the injection molding

machines of 300 half-casings per hour.
� T
he existing automated assembly line allows only for a

screw-less design.
� T
he casing must be moldable and its parts not exceed a

maximum depth of 30 cm in the direction of mold opening.
� F
or some reason, it is decided that production must run

uninterrupted for up to 1 week, implying that (at least) the

supply for 6000 units must be available at all times.

Fig. 5 concerns processes and their properties. A general

process embodies a product that may be molded or out-

sourced, a sub-assembly, or the vacuum cleaner itself.

Processes in the classes Outsource, Mold, and Assemble
inherit this property. The Assemble class in turn has another

field: a list of processes that provide input to this process. The

dashed arrow indicates that an assembly process needs other

processes.

Based on the definition of processes in Fig. 5, a process plan is

defined in Fig. 6 as an object namedprocessPlan (the name is

underlined; the colon separates the name of the object from its

class) of a specified class that is not here specified (no class name

is given after the colon). Fig. 6 shows that a process plan is an

aggregation of a number of objects in the classProcess (that is,

a set of out-sourcing, molding or assembly processes; the double

box indicates that multiple objects of this kind are present) and is

an instance of a process sequence (represented by the

Sequence box). An almost trivial constraint usually links a

product to a process plan: all parts must be the result of some

process and the output of all processes (except the final assembly

process) must be the input of another process.

Process interdependencies are often implicit in the structure of

a product and the nature of the processes. These interdepen-
Fig. 6. Process plans are composed
dencies in turn constrain the sequence of processes in a process

plan. Fig. 7 exemplifies internal dependencies (though these can

be automatically deduced from the process plan and design;

many parts of the vacuum cleaner are left out) in the form of an

assembly process hierarchy. Processes that have as output out-

sourced and molded parts do not depend on other processes,

whereas assembly processes do. These dependencies are the

cause of certain process precedences represented by the

constraints on the processes sequence in Fig. 6.

2.4. View: disposal and recycling

This view demonstrates how associations can be redefined to

suit particular modelling needs and at the same time to introduce

visually easily identifiable entities. In Fig. 8, the dash-dot-dotted

arrows are specialisations of an association between a product (or

a part of it) and the company by which it is disassembled,

recycled, or disposed of. The way a product is reprocessed is

indicated by the role of the actor at the right side; the arrow heads

allow for an effortless distinction. Throughout this publication,

only these links are not part of the original UML definition

(though they nonetheless conform to it as they are derived from

an association). The general re-processing association on

top defines the general properties, whereas the lower, horizontal

lines are the specialised associations. Thevertical arrows indicate

from which association they are derived. These re-processing

associations are used in Fig. 9.

Fig. 9 shows simple assembly models of domestic and

industrial-grade vacuum cleaners. Both types (classes) are

specialisations of the general (class) vacuum cleaner, distin-

guished by whether they have a metal or plastic casing. The

component motor is further decomposed into three main

constituents: rotor, stator and coils (in UML: is composed of a

rotor, stator, and coils). Fig. 9 shows which vendor or contractor

disposes of or recycles vacuum cleaners and their constituents.
of processes and a sequence.

G. Thimm et al. / Computers in Industry 57 (2006) 331–341336

Fig. 7. Constraints on process sequences in a process plan.
For instance, the figure shows that the company TakeApart
dismantles the vacuum cleaners with the exception of the

motor, which is taken care of by the company Scrap&Metal.

The flow of material associated with the recycling of vacuum

cleaners is shown in Fig. 10 in the form of an UML-sequence

diagram. The arrows indicate who is passing which parts to

whom (represented as UML messages). The texts above the

arrows indicate the designs the object belong to. The costs for

disposal and transport, as well as revenue from raw material,

can be included into this diagram by the means of ‘‘money

messages’’ and additional actors representing the transport

companies. Diagrams similar to those of Figs. 8–10 can be

drawn for procurement and assembly—additional associations

would have to be defined and used to link the actors to the

respective parts.

2.5. View: market requirements; PLUML and business
processes

The main intent of this view is to demonstrate that a PLUML

model can comprise entities used to model business processes
Fig. 8. The definition of end-
and engineering entities. To this end, purposes, objectives,

results, and deadlines as discussed in [9] are used in Fig. 11 to

plan the development of an industrial vacuum cleaner. In order

to simplify the figure, no results are shown. Furthermore,

deadlines are adorned with the clock symbol while business

objects are given a gray background. Both variations of the

symbols comply with the UML standard.

Additionally, the view Fig. 11 shows how a time line can be

represented in a PLUML model. For example, the design and

fabrication of the tooling for the casing is implicitly

constrained to not more than 5 months: the inner shape of

the casing depends on the choice of the motor, the design of

which can only be finalised once the objective finish
prototyping is achieved in September 2006. Prototyping,

design, material, and other changes can be reflected upstream.

In the given example, tooling for the casing can only start after

this date, leaving only 5 months to February 2007. The

automatic creation of a simple Gantt-chart from the diagram in

Fig. 11 is rather straight forward: the objectives and the

corresponding deadlines give the time line for benchmarks; the

constraints linking deadlines and dependencies among the
of-life-cycle associations.

G. Thimm et al. / Computers in Industry 57 (2006) 331–341 337

Fig. 9. The end-of-life responsibilities of vendors and contractors (compare Fig. 8).
various objects result in the times available to create the

objects.

The link between business processes and the time line given

by the deadlines in Fig. 11 can help to propagate constraints

across the two models. Say, a competitor announces the launch

of a similar product. This would trigger the addition of a

corresponding objective, a change to the deadline of the on
market objective, and a consequent revision of the other

deadlines.
Fig. 10. The end-of-life stage: components of vac
3. Model consistency and constraint management

Product changes take place over time and can affect one or

more life-cycle stages. For instance, a design change may be

necessitated by a manufacturing process; product servicing

may necessitate design changes to facilitate servicing and

repair. Unless the effects of such changes are reflected

throughout the model, inconsistencies will settle in. Conse-

quently, a mechanism is needed that maintains the consistency
uum cleaners are recycled in different flows.

G. Thimm et al. / Computers in Industry 57 (2006) 331–341338

Fig. 11. A business plan interacting with engineering entities.
of the overall model (e.g., the design and process plan must be

consistent; the final product must fulfill the objectives defined

during product conceptualisation).

Furthermore, external constraints imposed by the production

environment, regulation, budget, market and so on, must be

linked to the model and, in the case of dynamic constraints (that

is, constraints that change, emerge, or vanish while the product

life-cycle model is created or used), the model has to be

rectified. Within a PLUML model this could be achieved by

adding an object to it representing the source of the constraint,

and then using UML-constraints to link it to the constrained

object in the product-related part of the model. Examples of

dynamic constraints are:
� T
he level of available technology; new technology (newly-

acquired machines, for example) changes to constraints on

processes, and consequently process plans and designs (and

usually lead to more efficient production). The change of

constraints likely imply changes to many of the product life-

cycle stages.
� S
trategic product planning: at almost any time, the launch of

competing products may alter the targets set during product

conceptualisation and therefore the constraints of potentially

all life-cycles stages.
� T
he market: legislation, safety, and environmental regula-

tions, the number of targeted sold units, and other constraints

depend on the country for which the product is destined.
3.1. A consistency maintenance algorithm for PLUML
models

An obvious approach to model constraints in PLUML is to

use concepts already present in UML: general constraints,

interfaces, inheritance, and other types of associations.

However, as UML does not provide a means to check or

enforce constraints, the graphical modelling tool has to be

augmented by an implementable strategy to do this.

This strategy (outlined in Section 3.2) differentiates

constraints present in a PLM model according to their nature.

The classes of constraints are defined as:

G. Thimm et al. / Computers in Industry 57 (2006) 331–341 339
� F
unctional: a mathematical function states whether or not the

constraint is fulfilled and allows the calculation of any

parameter based on the changes given. For example, the

specified power of the motor and the rating of the power

supply (110 or 230 V) characterise the power regulator’s

current rating; if the former parameters are changed, the latter

can be automatically deduced.
� T
echnical: though the constraint is defined in mathematical

terms, the constraint can only be tested for validity. In the

case of a conflict, human intervention is necessary to rectify

the model. For example, a part’s resistance to force exerted on

it can be determined using finite-element methods, but in the

case of an unacceptable result, only a designer can take

corrective measures.
� S
ubjective: only a human is able to validate the constraint

(e.g., judge aesthetic aspects of a product or perform

experiments on a prototype). Constraints in this class may

even be imprecise (an object is perceived to be more or less

appealing by different persons; whether a product is

sufficiently reliable is up to human judgement).
� L
iteral: a constraint given in a descriptive form. Even if the

constraint has a precise technical significance and could be

formulated in this form, this is not done for some practical

reason. For example, the casing of the vacuum cleaner must

be strong enough to withstand the force of the motor, which

could be literally stated in a single phrase and ‘‘evaluated’’ by

an experienced engineer. Alternatively, a technical constraint

comprising forces and the design could be evaluated by the

means of a finite-element model, which may be avoided for

economical reasons.
� P
ending: any of the above constraints can be further classified

as ‘‘pending’’ if its validity cannot be evaluated as the product

model is not yet sufficiently evolved. Two examples are:

Production cost is a functional constraint typically

asserted during product conceptualisation. On the other

hand, it can only be ascertained when the design is near

completion and production methods are determined.

Constraints on in-house designs (the inner shape of the

vacuum cleaner) are pending until out-sourced parts (the

model of the motor) are selected.
The next concern is the strategy to resolve conflicting

constraints. Clearly, only a semi-automatic approach to achieve

and maintain consistency is viable. Due to the large number of

constraints, holistic approaches, for example, variations of

general-purpose optimisation techniques (hill climbing, simu-

lated annealing, and so on) [25] , logic and constraint logic

programming [26,27] , truth maintenance systems [28] , genetic

algorithms [29] as well as expert or rule-based systems [25]

cannot be applied easily and if so, only locally. A further obstacle

in using these approaches is the very nature of the constraints. In

particular, in the earlier modelling stages, a majority of the

constraints are pending, literal, and/or subjective.

In order to formalise constraints, UML has to be

complemented by a constraint-modelling language. The object

constraint language (OCL) [30–32] is likely a good approach

for doing so. However, as OCL is very much tailored for
software engineering purposes and does not offer an approach

for constraint maintenance, much work remains to be done. For

example, constraints cannot be placed on classes (that is, all

instances derived from them); a general constraint like ‘‘All
wires (read: instances of class Wire) must be at a minimal
distance from hot parts (objects that have a flag hot set)’’

cannot be formulated easily.

Furthermore, given that PLUML models are potentially very

large with possibly many inconsistent, subjective and pending

constraints, the strategy has to be able to handle situations in

which an automated updating can result in endless loops.

3.2. The algorithm

In order to resolve these problems, the following strategy is

proposed: the resolution of conflicts and the further devel-

opment of the model are integrated into an approach that

allows a stepwise refinement of the model and a possible

backtracking to earlier stages in the model. Each step in the

refinement (which may include several modifications to the

model) is characterised by a model Mt and a set of unfulfilled

constraints Ct at time t. The models Mt evolve with time into

models with ever greater detail and the set of unfulfilled

constraints towards the empty set. The following algorithm

realises this strategy (a state is an atomic property of a class, an

object, an association, and so on, including the presence or

absence of the property):
(1) R
eplicate Mt�1 and Ct�1 in order to obtain Mt and Ct.
(2) C
reate an empty set of states S. This set is used to track

modifications to model Mt.
(3) P
rompt the user (that is, one of the stake holders) for

(a) constraints to be changed and constraints to be added to

or removed from Ct,

(b) changes to states of PLUML symbols (that is, the

electronic description of associations, objects, classes,

and so on) in Mt, and

(c) PLUML symbols to be added to or removed from Mt.
Then modify the model Mt accordingly.
(4) F
or all constraints c2Ct do the following:

(a) If the constraint c is functional or technical (only then it

can be tested automatically) and is fulfilled, do nothing.

(b) If c is functional and unsatisfied, the action taken

depends on whether the states c constrains were already

modified in the current iteration of this algorithm:

� If constraint c can be satisfied by modifying states not

present in S, the states are changed accordingly and

then added to S.

� If the constraint c cannot be satisfied by such a

modification of non-current states, report c to the user.

(c) In all other cases (that is, the constraint is technical and

unsatisfied, subjective, pending, or literal), report c to

the user.
(5) I
f the user desires, revoke the changes by eliminating Mt

and Ct. Otherwise, increment t and reiterate the algorithm

until Ct is empty and Mt is a completed life-cycle model.

G. Thimm et al. / Computers in Industry 57 (2006) 331–341340
This algorithm still needs some refinements: for instance, it

is not necessarily desirable that all constraints are evaluated and

presented to the user after each modification (steps 4b and 4c).

Thus, constraints in the set Ct must be prioritised ([20]

addresses this problem and suggests assigning higher priority to

constraints of early life-cycle stages) and, for example, events

triggering their reconsideration established.

Note that this algorithm possesses properties usually not

present in constraint solving algorithms: backtracking is only

initiated if the user desires it (see step 5). The interim

solutions are unstable as states may change their values

continuously back and forth or even diverge. However, the

algorithm has the advantage that a single iteration is

guaranteed to terminate (each state variable is modified at

most once in model Mt), and that a user has a very good

control over the direction the model is developing. A possible

way to instill user friendliness and the potential for

collaborative design and production into the approach is

combine it with an issue (a.k.a. bug or defect) tracking

system. In this framework, once the modifying stake holder

approves the changes, the unresolved constraints from steps

4b and 4c of the algorithm are routed to the stake holders

qualified to address them.

4. Conclusion and future work

Product life-cycle management requires a modelling frame-

work showing the associations among the life-cycle stages,

business processes, and stake-holders. The potential of UML as

a medium to model a product’s life-cycle is presented using the

example of a vacuum cleaner. One of the major challenges of

UML modelling is to ensure consistent product life-cycle

models with respect to constraints within the model as well as

with those imposed from outside, such as by safety regulations

or by the market. A possible approach to enforce and maintain

model consistency is discussed. An algorithm is proposed. The

approach recognises that many constraints are subjective or

depend on missing information, and that many constraints

require human intervention to resolve.

It is the authors’ intention to extend the existing UML to

allow constraint management and to further integrate it with

conventional engineering tools providing functionalities like

CAD and CAM. However, before an industrial application can

happen, the following issues (research foci of the authors) must

first be addressed:

� The multitude of interactions among and the inter-depen-
dencies of parts in a complex machine necessitate the use of a

template library of common sub-assemblies and parts.
� T
ools to translate PLUML models into representations such

as bills-of-material or Gantt charts need to be developed.
� K
nowledge must be represented and embedded in the product

model and managed to assure consistency with business pra-

ctices, current technologies, and the production environment.

In conclusion, the authors postulate that a UML model of

PLM is feasible and can potentially improve current practices

in product life-cycle management.
References

[1] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language

User Guide, Object Technology Series, Addison-Wesley, 1999.

[2] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Langu-

age Reference Manual, Object Technology Series, Addison-Wesley,

1999 .

[3] R.G. Askin, C.R. Standridge, Modeling and Analysis of Manufacturing

Systems, John Wiley & Sons Inc, New York, 1993.

[4] A.M. Law, W.D. Kelton, Simulation Modeling and Analysis, third ed.,

McGraw Hill Inc., New York, 2000.

[5] G. Chen, Y.-S. Ma, X. Ming, G. Thimm, S.G. Lee, L.-P. Khoo, S.-H. Tang,

W.F. Lu, A unified feature modeling scheme for multi-applications in

PLM, CE2005, in: The 12th ISPE International Conference on Con-

current Engineering: Research and Applications, Ft. Worth, Dallas, USA,

2005.

[6] G. Chen, Y.-S. Ma, G. Thimm, S.-H. Tang, Knowledge-based reasoning in

a unified feature modeling scheme, Computer-aided Design and Applica-

tions 2 (1–4) (2005) 173–182.

[7] Air Force Wright Aeronautical Laboratories Integrated Computer-

Aided Manufacturing (ICAM) Architecture, Part II, vol. IV, Func-

tion Modeling Manual (IDEF0) AFWAL-TR-81–4023 (June),

Materials Laboratory, Air Force Wright Aeronautical Laboratories, Air

Force Systems Command, Wright-Patterson Air Force Base, Ohio 45433,

1981.

[8] B. Kiepuszewski, Expressiveness and suitability of languages for control

flow modelling in workflows, Ph.D. Thesis, Faculty of Information Tech-

nology, Queensland University of Technology (November 13, 2002). http://

tmitwww.tm.tue.nl/research/patterns/download/phd_bartek.pdf.

[9] C. Marshall, Enterprise Modeling with UML: Designing Sucessful Soft-

ware through Business Analysis, Object Technology Series, Addison-

Wesley, 1999.

[10] H.-E. Eriksson, M. Penker, Business Modeling with UML: Business

Patterns at Work, John Wiley & Sons, New York, 2000.

[11] Object Management Group, Inc., Home page: http://www.omg.org, 2004.

[12] Y.-M. Deng, G.A. Britton, S. Tor, Constraint-based functional design

verification for conceptual design, Computer-Aided Design 32 (2000)

889–899.

[13] G.A. Britton, S.B. Tor, Y.C. Lam, Y.-M. Deng, Modelling functional

design information for injection mould design, International Journal of

Production Research 39 (12) (2001) 2501–2515.

[14] S.W. Lye, S.G. Lee, M.K. Khoo, An environmental design evaluation tool,

Journal of Engineering with Computers 18 (2002) 14–23.

[15] S.W. Lye, S.G. Lee, M.K. Khoo, A design methodology for the strategic

assessment of a product’s eco-efficiency, International Journal of Produc-

tion Research 39 (11) (2001) 2453–2474.

[16] S.G. Lee, X. Xu, A simplified life cycle assessment of re-usable and

single-use bulk transit packaging, Packaging Technology and Science 17

(2004) 67–68.

[17] Y.-S. Ma, S.B. Tor, G.A. Britton, The development of a standard compo-

nent library for plastic injection mould design using an object-oriented

approach, International Journal of Advanced Manufacturing Technology

22 (2003) 611–618.

[18] Y.-S. Ma, G.A. Britton, S.B. Tor, L.-Y. Jin, G. Chen, S.-H. Tang, Design of

a feature-object-based mechanical assembly library, Computer-Aided

Design & Applications 1 (1–4) (2004) 387–404.

[19] W. van Holland, W.F. Bronsvoort, Assembly features in modelling and

planning, Robotics and Computer Integrated Manufacturing 16 (4) (2000)

277–294.

[20] W.F. Bronsvoort, A. Noort, Multiple-view feature modelling for integral

product developement, Computer-Aided Design 36 (10) (2004) 929–

946.

[21] A. Noort, G.F.M. Hoek, W.F. Bronsvoort, Integrating part and assembly

modelling, Computer-Aided Design 34 (12) (2002) 899–912.

[22] G. Chen, Y.-S. Ma, G. Thimm, S.-H. Tang, Unified feature modeling

scheme for the integration of CAD and CAx, Computer-Aided Design &

Applications 1 (1–4) (2004) 595–602.

http://tmitwww.tm.tue.nl/research/patterns/download/phd_bartek.pdf
http://tmitwww.tm.tue.nl/research/patterns/download/phd_bartek.pdf
http://www.omg.org

G. Thimm et al. / Computers in Industry 57 (2006) 331–341 341
[23] S.-H. Tang, Y.-S. Ma, G. Chen, A web-based collaborative feature

modeling system framework, in: S. Hinduja (Ed.), Proceedings of the

34th International MATADOR Conference, Springer-Verlag, Manchester,

United Kingdom, 2004, pp. 31–36.

[24] R. Bidarra, W.F. Bronsvoort, Semantic feature modelling, Computer-

Aided Design 32 (2000) 201–225.

[25] A.A. Hopgood, Intelligent Systems for Engineers and Scientists, second

ed., CRC Press, 2001.

[26] L. Sterling, E. Shapiro, The Art of Prolog, MIT Press Series in Logic

Programming, The MIT Press, 1986.

[27] J. Jaffar, M.J. Maher, Constraint logic programming: a survey, Journal of

Logic Programming 19/20 (1994) 503–581.

[28] K.D. Forbus, J. De Kleer, Building Problem Solvers, MIT Press, 1993.

[29] P.J. Bentley (Ed.), Evolutionary Design by Computers, Morgan Kaufman,

Inc., 1999.

[30] J.B. Warmer, A.G. Kleppe, The Object Constraint Language: Precise

Modeling with UML, The Addison-Wesley Object Technology Series,

second ed., Addison-Wesley, 1999.

[31] Klasse Objecten, Inc., Welcome to the OCL center: http://www.klasse.nl/

ocl/, 2004.

[32] Object Management Group, Inc., UML 2.0 OCL Final Adopted Specifica-

tion, document ptc/03–10-14 (October 2003). http://www.omg.org.

G. Thimm joined the Dalle Molle Institute for

Perceptual Artificial Intelligence in Switzerland,

after receiving in 1992 a diploma in computer

science from the University of Karlsruhe. There,

he performed research on higher order neural net-

works in preparation of a doctor’s degree in technical

sciences, which he obtained in 1997 from the Swiss

Federal Institute of Technology in Lausanne. After

some research on image recognition, he joined the

Nanyang Technological University (Singapore) in

1999 as research fellow and was converted to assistant professor in 2000.

His research interests are in the application of artificial intelligence and graph

theory, currently focused on process planning, design for manufacturability, and

product life-cycle management. He is member of several editorial boards of

internationally recognised journals.
Stephen Siang-Guan Lee is an associate professor

and Director of the Design Research Centre in the

School of Mechanical & Production Engineering,

NTU. Dr. Lee’s bachelor degree was in mechanical

engineering and earned his MSc in advanced man-

ufacturing technology from the UMIST (UK) and

PhD (NTU) in 1985 and 1997, respectively. Prior to

joining Nanyang Technological University in 1983,

he was engaged in design and consulting assignments

in local manufacturing companies. As a faculty

member of the School of Mechanical & Aerospace Engineering, Dr. Lee

teaches courses related to concurrent engineering, design for the environment,

product safety in which areas he has been consulted by local industry. His

research interests are in design methodology, product packaging, knowledge-

based design and manufacturing, product life cycle management and dynamic

enterprise collaboration. Dr. Lee is a registered professional engineer, a Fellow

of the Society of Manufacturing Engineers, and a member of the ASME. An

active member of the SME since 1987, Dr. Lee held senior appointments in the

Singapore Chapter, culminating with the Chapter Chairmanship in 1990. In

1992, the Society of Manufacturing Engineers conferred on him its Award of

Merit and in 1998, he was elected to its College of Fellows.

Yongsheng Ma is currently an associate professor at

school of Mechanical and Aerospace Engineering,

Nanyang Technological University (NTU), Singa-

pore. His main research areas include product life-

cycle management, feature-based product and

process modeling, and engineering IT solutions.

Graduated from Tsing Hua University, Beijing with

BEng degree in 1986, he further studied at UMIST,

UK and achieved Msc and PhD degrees in 1990 and

1994, respectively. He started his career as a Lecturer

at Ngee Ann Polytechnic, Singapore from 1993 to 1996. From 1996 to 2000, he

worked in Singapore Institute of Manufacturing Technology, as a research

fellow, project leader, senior research fellow and group manager. He joined

NTU since Sept. 2000.

http://www.klasse.nl/ocl/
http://www.klasse.nl/ocl/
http://www.omg.org

	Towards unified modelling of product life-cycles
	Introduction
	Why UML is a good PLM modelling language
	Data modelling for PLM
	Possible issues in the UML modelling of PLM

	A PLUML case study: a vacuum cleaner
	View: conceptualisation; function, maintenance, and design constraints
	View: detailed design; assembly and model consistency
	View: production, warehousing, and process planning
	View: disposal and recycling
	View: market requirements; PLUML and business processes

	Model consistency and constraint management
	A consistency maintenance algorithm for PLUML models
	The algorithm

	Conclusion and future work
	References

